Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Orthop Surg Res ; 19(1): 251, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643101

RESUMEN

BACKGROUND: To analyze the relationship between lipid metabolism, coagulation function, and bone metabolism and the contributing factor and staging of non-traumatic femoral head necrosis, and to further investigate the factors influencing the blood indicators related to the staging of non-traumatic femoral head necrosis. METHODS: The medical records of patients with femoral head necrosis were retrieved from the inpatient medical record management system, and the lipid metabolism, bone metabolism, and coagulation indices of non-traumatic femoral head necrosis (including alcoholic, hormonal, and idiopathic group) were obtained according to the inclusion and exclusion criteria, including Low-Density Lipoprotein Cholesterol, Triglycerides, Non-High-Density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Alkaline Phosphatase, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Prothrombin Time, D-dimer, Platelet count. The relationship between these blood indices and the different stages under different causative factors was compared, and the factors influencing the stages of non-traumatic femoral head necrosis were analyzed using multivariate logistic regression. RESULTS: (i) Gender, Age and BMI stratification, Low-density Lipoprotein Cholesterol, Triglycerides, Non-High-density Lipoprotein Cholesterol, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Plasminogen Time, D-dimer, and Platelet count of the alcohol group were statistically different when compared among the different ARCO staging groups; (ii) The differences in Age and BMI stratification, Triglycerides, Non-High-density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein B, Apolipoprotein E, Uric Acid, Bone-specific Alkaline Phosphatase, Activated Partial Thromboplastin Time, Plasminogen Time, D-dimer, and Platelet count were statistically significant when compared among the different phases in the hormone group (P < 0.05); (iii) The differences in Age and BMI stratification, Non-High-Density Lipoprotein Cholesterol, Apolipoprotein A1, Apolipoprotein (B), Apolipoprotein (E), Uric Acid, Activated Partial Thromboplastin Time, D-dimer, and Platelet count were statistically significant when compared among the different stages in the idiopathic group (P < 0.05); (v) Statistically significant indicators were included in the multivariate logistic regression analysis, excluding the highly correlated bone-specific alkaline phosphatase, and the results showed that Low-density lipoprotein was negatively correlated with changes in the course of ARCO, and Non-High-Density Lipoprotein cholesterol, Apo B, Activated Partial Thromboplastin Time, and Platelet count were significantly and positively correlated with disease progression. CONCLUSION: An abnormal hypercoagulable state as well as an abnormal hyperlipidemic state are risk factors for the progression of non-traumatic femoral head necrosis under various exposure factors, as indicated by Non-High-Density Lipoprotein Cholesterol, Apolipoprotein B, Activated Fractional Thromboplastin Time, and Platelet Counts.


Asunto(s)
Apolipoproteína A-I , Necrosis de la Cabeza Femoral , Humanos , Modelos Logísticos , Metabolismo de los Lípidos , Fosfatasa Alcalina , Ácido Úrico , Colesterol , Triglicéridos , LDL-Colesterol , Plasminógeno
3.
New Phytol ; 242(1): 231-246, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326943

RESUMEN

N6 -methyladenosine (m6 A) is the most abundant mRNA modification in eukaryotes and is an important regulator of gene expression as well as many other critical biological processes. However, the characteristics and functions of m6 A in peanut (Arachis hypogea L.) resistance to bacterial wilt (BW) remain unknown. Here, we analyzed the dynamic of m6 A during infection of resistant (H108) and susceptible (H107) peanut accessions with Ralstonia solanacearum (R. solanacearum), the causative agent of BW. Throughout the transcriptome, we identified 'URUAY' as a highly conserved motif for m6 A in peanut. The majority of differential m6 A located within the 3' untranslated region (UTR) of the transcript, with fewer in the exons. Integrative analysis of RNA-Seq and m6 A methylomes suggests the correlation between m6 A and gene expression in peanut R. solanacearum infection, and functional analysis reveals that m6 A-associated genes were related to plant-pathogen interaction. Our experimental analysis suggests that AhALKBH15 is an m6 A demethylase in peanut, leading to decreased m6 A levels and upregulation of the resistance gene AhCQ2G6Y. The upregulation of AhCQ2G6Y expression appears to promote BW resistance in the H108 accession.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/genética , Transcriptoma , Regulación hacia Arriba , ARN , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
China CDC Wkly ; 6(4): 64-68, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38313818

RESUMEN

What is already known about this topic?: Mushroom poisoning poses a significant food safety concern in China, with a total of 196 species identified in poisoning incidents by the end of 2022. What is added by this report?: In 2023, the China CDC conducted an investigation into 505 cases of mushroom poisoning spanning 24 provincial-level administrative divisions. This investigation resulted in 1,303 patients and 16 deaths, yielding a case fatality rate of 1.23%. A total of 97 mushrooms were identified as the cause of 6 distinct clinical disease types, with 12 species newly documented as poisonous mushrooms in China. What are the implications for public health practice?: Close collaboration among CDC staff, physicians, and mycologists remains crucial for the control and prevention of mushroom poisoning in the future.

5.
Plant Physiol Biochem ; 207: 108411, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309181

RESUMEN

Peanut (Arachis hypogaea L.) is one of the most important oil and industrial crops. However, heavy-metal pollution and frequent soil diseases, poses a significant threat to the production of green and healthy peanuts. Herein, we investigated the effects of heavy metal Cd2+ toxicity to the peanuts, and screened out two peanut cultivars H108 and YZ 9102 with higher Cd2+-tolerance. RNA-seq revealed that Natural resistance-associated macrophage proteins (NRAMP)-like genes were involved in the Cd2+ stress tolerance in H108. Genome-wide identification revealed that 28, 13 and 9 Nramp-like genes existing in the A. hypogaea, A. duranensis and A. ipaensis, respectively. The 50 peanut NRAMP genes share conserved architectural characters, and they were classified into two groups. Expressions of AhNramps, particularly AhNramp4, AhNramp12, AhNramp19, and AhNramp25 could be greatly induced by not only cadmium toxicity, but also copper and zinc stresses. The expression profiles of AhNramp14, AhNramp16 and AhNramp25 showed significant differences in the H108 (resistance) and H107 (susceptible) under the infection of bacterial wilt. In addition, we found that the expression profiles of AhNramp14, AhNramp16, and AhNramp25 were greatly up- or down-regulated by the application of exogenous salicylic acid, methyl jasmonate, and abscisic acid. The AhNramp25, of which expression was affected by both heavy metal toxicity and bacterial wilt infection, were selected as strong candidate genes for peanut stress breeding. Our findings will provide an additional information required for further analysis of AhNramps involved in tolerance to heavy metal toxicity and resistance to bacterial wilt of peanut.


Asunto(s)
Arachis , Cadmio , Arachis/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Fitomejoramiento , Inmunidad Innata , Macrófagos
6.
Small ; 20(1): e2304898, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670213

RESUMEN

The commercialization of Li-S batteries as a promising energy system is terribly impeded by the issues of the shuttle effect and Li dendrite. Keggin Al13 -pillared montmorillonite (AlMMT), used as the modified film of the separator together with super-P and poly (vinylidene fluoride) (PVDF), has a good chemical affinity to lithium polysulfide (LiPS) to retard the polysulfide shuttling, excellent electrolyte wettability, and a stable structure, which can improve the rate capability and cycling stability of Li-S batteries. Density function theory (DFT) calculations reveal the strong adsorption ability of AlMMT for LiPS. Consequently, the modified film allows Li-S batteries to reach 902 mAh g-1 at 0.2C after 200 cycles and 625 mAh g-1 at 1C after 1000 cycles. More importantly, a high reversible areal capacity of 4.04 mAh cm-2 can be realized under a high sulfur loading of 6.10 mg cm-2 . Combining the merits of rich resources of montmorillonite, prominent performance, simple operation and cost-effectiveness together, this work exploits a new route for viable Li-S batteries for applications.

8.
Plant Commun ; 5(1): 100672, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37563834

RESUMEN

Some fungal accessory chromosomes (ACs) may contribute to virulence in plants. However, the mechanisms by which ACs determine specific traits associated with lifestyle transitions along a symbiotic continuum are not clear. Here we delineated the genetic divergence in two sympatric but considerably variable isolates (16B and 16W) of the poplar-associated fungus Stagonosporopsis rhizophilae. We identified a âˆ¼0.6-Mb horizontally acquired AC in 16W that resulted in a mildly parasitic lifestyle in plants. Complete deletion of the AC (Δ16W) significantly altered the fungal phenotype. Specifically, Δ16W was morphologically more similar to 16B, showed enhanced melanization, and established beneficial interactions with poplar plants, thereby acting as a dark septate endophyte. RNA sequencing (RNA-seq) analysis showed that AC loss induced the upregulation of genes related to root colonization and biosynthesis of indole acetic acid and melanin. We observed that the AC maintained a more open status of chromatin across the genome, indicating an impressive remodeling of cis-regulatory elements upon AC loss, which potentially enhanced symbiotic effectiveness. We demonstrated that the symbiotic capacities were non-host-specific through comparable experiments on Triticum- and Arabidopsis-fungus associations. Furthermore, the three isolates generated symbiotic interactions with a nonvascular liverwort. In summary, our study suggests that the AC is a suppressor of symbiosis and provides insights into the underlying mechanisms of mutualism with vascular plants in the absence of traits encoded by the AC. We speculate that AC-situated effectors and other potential secreted molecules may have evolved to specifically target vascular plants and promote mild virulence.


Asunto(s)
Ascomicetos , Simbiosis , Simbiosis/genética , Endófitos/genética , Árboles/genética , Ascomicetos/genética , Plantas/genética , Cromosomas
9.
J Agric Food Chem ; 72(6): 3218-3230, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38157443

RESUMEN

Peanut (Arachis hypogaea L.) is one of the most important oil crops in the world due to its lipid-rich seeds. Lipid accumulation and degradation play crucial roles in peanut seed maturation and seedling establishment, respectively. Here, we utilized lipidomics and transcriptomics to comprehensively identify lipids and the associated functional genes that are important in the development and germination processes of a large-seed peanut variety. A total of 332 lipids were identified; triacylglycerols (TAGs) and diacylglycerols were the most abundant during seed maturation, constituting 70.43 and 16.11%, respectively, of the total lipids. Significant alterations in lipid profiles were observed throughout seed maturation and germination. Notably, TAG (18:1/18:1/18:2) and (18:1/18:2/18:2) peaked at 23386.63 and 23392.43 nmol/g, respectively, at the final stage of seed development. Levels of hydroxylated TAGs (HO-TAGs) increased significantly during the initial stage of germination. Accumulation patterns revealed an inverse relationship between free fatty acids and TAGs. Lipid degradation was determined to be regulated by diacylglycerol acyltransferase, triacylglycerol lipase, and associated transcription factors, predominantly yielding oleic acid, linoleic acid, and linolenic acid. Collectively, the results of this study provide valuable insights into lipid dynamics during the development and germination of large-seed peanuts, gene resources, and guiding future research into lipid accumulation in an economically important crop.


Asunto(s)
Arachis , Germinación , Arachis/metabolismo , Movilización Lipídica , Ácido Oléico/metabolismo , Triglicéridos/metabolismo , Semillas/metabolismo
10.
PLoS One ; 18(12): e0290472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117813

RESUMEN

Based on the ecological-economic-social system, green development efficiency is divided into green ecological efficiency, green economic efficiency and green social efficiency. Their corresponding indicator systems are constructed, and the Super-SBM model, Super-SBM-Undesirable model and kernel density estimation are applied to measure and analyze green development efficiency and its dynamic evolution in western China from 2007 to 2019. Tobit model is constructed and used to empirically analyze the influencing factors of the green development efficiency in western China. The study shows that: (1) green ecological efficiency and green economic efficiency in western China are generally at a low level, and mainly dragged by northwest China, while green social efficiency in western China is generally at a high level, and mainly dragged by southwest China; (2) green ecological efficiency, green economic efficiency and green social efficiency in western China all show a slight trend of first decreasing and then increasing; (3) all three sub-efficiencies of green development in western China have a decreasing trend of absolute difference, right trailing and polarization; (4) the lower green ecological efficiency in western China is due to the negative impacts from the level of government intervention, the level of economic development, and foreign direct investment. The lower green economic efficiency is due to the positive impacts from population density, the level of government intervention, the level of financial development, and foreign direct investment. The higher green social efficiency is due to the positive impacts from population density, the level of financial development, the level of economic development, and the green technological innovation. The study is based on countermeasure recommendations focusing on improving green social efficiency in southwest China, as well as green ecological efficiency and green economic efficiency in northwest China, which are of reference value to promote green development more comprehensively in western China.


Asunto(s)
Conservación de los Recursos Naturales , Desarrollo Sostenible , Ecosistema , China , Desarrollo Económico , Eficiencia
12.
iScience ; 26(7): 107062, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534185

RESUMEN

Cytosine methylation is an important epigenetic modification involved in regulation of plant development. However, the epigenetic mechanisms governing peanut seed development remain unclear. Herein, we generated DNA methylation profiles of developmental seeds of peanut H2014 and its smaller seed mutant H1314 at 15 and 60 days after pegging (DAP, S1, S4). Accompanying seed development, globally elevated methylation was observed in both lines. The mutant had a higher methylation level of 31.1% than wild type at S4, and 27.1-35.9% of the differentially methylated regions (DMRs) between the two lines were distributed in promoter or genic regions at both stages. Integrated methylome and transcriptome analysis revealed important methylation variations closely associated with seed development. Furthermore, some genes showed significantly negative correlation of expression with the methylation level within promoter or gene body. The results provide insights into the roles of DNA methylation in peanut seed development.

13.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37562403

RESUMEN

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Asunto(s)
Briófitas , Cambio Climático , Ecosistema , Aclimatación , Adaptación Fisiológica , Tibet , Briófitas/fisiología
14.
Plant Biotechnol J ; 21(10): 2113-2124, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37431286

RESUMEN

Pod size is a key agronomic trait that greatly determines peanut yield, the regulatory genes and molecular mechanisms that controlling peanut pod size are still unclear. Here, we used quantitative trait locus analysis to identify a peanut pod size regulator, POD SIZE/WEIGHT1 (PSW1), and characterized the associated gene and protein. PSW1 encoded leucine-rich repeat receptor-like kinase (LRR-RLK) and positively regulated pod stemness. Mechanistically, this allele harbouring a 12-bp insertion in the promoter and a point mutation in the coding region of PSW1 causing a serine-to-isoleucine (S618I) substitution substantially increased mRNA abundance and the binding affinity of PSW1 for BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). Notably, PSW1HapII (super-large pod allele of PSW1) expression led to up-regulation of a positive regulator of pod stemness PLETHORA 1 (PLT1), thereby resulting in larger pod size. Moreover, overexpression of PSW1HapII increased seed/fruit size in multiple plant species. Our work thus discovers a conserved function of PSW1 that controls pod size and provides a valuable genetic resource for breeding high-yield crops.


Asunto(s)
Arachis , Fitomejoramiento , Arachis/genética , Fenotipo , Sitios de Carácter Cuantitativo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Front Plant Sci ; 13: 1017672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479521

RESUMEN

Plant height affects crop production and breeding practices, while genetic control of dwarfism draws a broad interest of researchers. Dwarfism in soybean (Glycine max) is mainly unexplored. Here, we characterized a dwarf mutant dm screened from ethyl methanesulfonate (EMS) mutated seeds of the soybean cultivar Zhongpin 661(ZP). Phenotypically, dm showed shorter and thinner stems, smaller leaves, and more nodes than ZP under greenhouse conditions. Genetically, whole-genome sequencing and comparison revealed that 210K variants of SNPs and InDel in ZP relative to the soybean reference genome Williams82, and EMS mutagenesis affected 636 genes with variants predicted to have a large impact on protein function in dm. Whole-genome methylation sequencing found 704 differentially methylated regions in dm. Further whole-genome RNA-Seq based transcriptomic comparison between ZP and dm leaves revealed 687 differentially expressed genes (DEGs), including 263 up-regulated and 424 down-regulated genes. Integrated omics analyses revealed 11 genes with both differential expressions and DNA variants, one gene with differential expression and differential methylation, and three genes with differential methylation and sequence variation, worthy of future investigation. Genes in cellulose, fatty acids, and energy-associated processes could be the key candidate genes for the dwarf phenotype. This study provides genetic clues for further understanding of the genetic control of dwarfism in soybean. The genetic resources could help to inbreed new cultivars with a desirable dwarf characteristic.

17.
J Proteome Res ; 21(11): 2635-2646, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36264770

RESUMEN

Cerebral infarction (CI) remains a major cause of high mortality and long-term disability worldwide. The exploration of biomarkers and pathogenesis is crucial for the early diagnosis of CI. Although the understanding of metabolic perturbations underlying CI has increased in recent years, the relationship between altered metabolites and disease pathogenesis has only been partially elucidated and requires further investigation. In this study, we performed an integrated metabolomics and lipidomics analysis on 59 healthy subjects and 47 CI patients. Ultimately, 49 metabolite and 68 lipid biomarkers were identified and enriched in 24 disturbed pathways. The metabolic network revealed a significant interaction between altered lipids and other metabolites. Using receiver operating characteristic curve (ROC) analysis, a panel of three polar metabolites and seven lipids was optimized in the training set, which included taurine, oleoylcarnitine, creatinine, PE(22:6/P-18:0), Cer 34:2, GlcCer(d18:0/18:0), DG 44:0, LysoPC(16:0), 22:6-OH/LysoPC, and TAG58:7-FA22:4. Subsequently, a support vector machine (SVM) model was constructed and validated, which showed excellent predictive ability in the validation set. Thereby, the integrated metabolomics and lipidomics approach could contribute to a comprehensive understanding of the metabolic dyshomeostasis associated with the pathogenesis of underlying CI. The present research may promote a deeper understanding and early diagnosis of CI in the clinic. All raw data were deposited in PRIDE (PXD036199).


Asunto(s)
Lipidómica , Metabolómica , Humanos , Redes y Vías Metabólicas , Biomarcadores/metabolismo , Diagnóstico Precoz , Infarto Cerebral/diagnóstico
18.
Nanoscale Adv ; 4(9): 2171-2179, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-36133450

RESUMEN

Here, a series of Fe/N/C catalysts with different proportions and pyrolysis temperatures are prepared by co-pyrolysis of melamine with a γ-cyclodextrin metal-organic framework (γ-CD-MOF) containing iron(ii) phthalocyanine (FePc). Due to the restriction effect of the host and guest at the molecular level, γ-CD-MOF can effectively avoid the π-π stacking of FePc and restrain the agglomeration of Fe atoms during pyrolysis. The phases and structures of the catalysts are characterized, which proves that the obtained catalyst has a three-dimensional porous and internal cavity structure with abundant surface area (1055.317 m2 g-1) and Fe is atomically dispersed in nitrogen-doped carbon. The onset potential (0.988 V vs. RHE) and half-wave potential (0.846 V vs. RHE) of FePc@CD/M (1 : 20)-1000 are superior to those of a commercial 20% Pt/C catalyst. FePc@CD/M (1 : 20)-1000 also exhibits an approximately four-electron (3.84) transfer process, good stability and excellent methanol tolerance.

19.
Microbiol Spectr ; 10(5): e0226022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135597

RESUMEN

Distinct plant associated microbiomes live in rhizosphere soil, roots, and leaves. However, the differences in community assembly of fungi and bacteria along soil-plant continuum are less documented in ecosystems. We examined fungal and bacterial communities associated with leaves, roots, and rhizosphere soil of the dominant arbuscular mycorrhizal (AM) plants Taraxacum mongolicum and Elymus nutans and non-AM plant Carex enervis in the Zoige Wetland by using high throughput sequencing techniques. The operational taxonomic unit (OTU) richness of fungi and bacteria was significantly higher in rhizosphere soil than in roots and leaves, and their community compositions were significantly different in the rhizosphere soil, roots, and leaves in each plant species. The co-occurrence network analysis revealed that the sensitive fungal and bacterial OTUs with various taxonomic positions were mainly clustered into different modules according to rhizosphere soil, roots, and leaves in each plant species. Along the soil-plant continuum, the rhizosphere soil pool contributed more source on bacterial than on fungal communities in roots and leaves of the three plant species, and more source on bacterial and fungal communities in leaves of T. mongolicum and E. nutans compared with C. enervis. Furthermore, the root pool contributed more source on bacterial than on fungal communities in leaves of T. mongolicum and E. nutans but not that of C. enervis. This study highlights that the host plant selection intensity is higher in fungal than in bacterial communities in roots and leaves from rhizosphere soil in each plant species, and differs in fungal and bacterial communities along the soil-plant continuum in AM plants T. mongolicum and E. nutans and non-AM plant C. enervis in the Zoige Wetland. IMPORTANCE Elucidating the community microbiome assemblage alone the soil-plant continuum will help to better understand the biodiversity maintenance and ecosystem functioning. Here, we examined the fungal and bacterial communities in rhizosphere soil, roots, and leaves of two dominant AM plants and a non-AM plant in Zoige Wetland. We found that along the soil - plant continuum, host plant selection intensity is higher in fungal than in bacterial communities in roots and leaves from rhizosphere soil in each plant species, and differs in fungal and bacterial communities in the AM- and non-AM plants. This is the first report provides evidence of different assembly patterns of fungal and bacterial communities along the soil-plant continuum in the AM- and non-AM plants in the Zoige Wetland.


Asunto(s)
Microbiota , Micorrizas , Suelo , Microbiología del Suelo , Humedales , Raíces de Plantas/microbiología , Bacterias/genética , Plantas/microbiología , Hongos/genética
20.
Int Orthop ; 46(4): 761-768, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34988620

RESUMEN

BACKGROUND: Much research has focused on quantifying the bony characteristics of patients with developmental dysplasia of the hip (DDH). Far less attention, however, has been paid to muscle abnormalities around the hip such as those in the gluteus medius (GM). METHODS: We retrospectively examined clinical and imaging data, such as the age of onset and computed tomography (CT) findings, in 108 consecutive hips. Subjects for the control group were selected from our radiology database. Two readers independently evaluated the length (LGM), cross-sectional area (CSA), width (WGM), and thickness (TGM) of the GM and arm of GM (AGM) and angle of the GM activation (AOA) and bony parameters including the acetabulum-head index (AHI), lateral central edge angle (LCEA), acetabular index (AI), femoral offset (FO), and height of the rotation centre of femoral head (HCFH) among all cases using the imaging data. RESULTS: The patient group included 108 hips. The AGM, LGM, CSA, and TGM were lower in the DDH patients, while AOA was higher. However, there was no significant difference in the WGM between the two groups. Multiple linear regression analysis showed that AGM and AOA were independent factors affecting LCEA. The following regression equation was used: Y(LCEA) = 5.377 * X1 (AGM) - 0.310 * X2 (AOA) - 11.331. The mechanical characteristics of the GM and many bony parameters were significantly correlated (the AGM and AHI, LCEA, AI, FO, but not HCFH; AOA and AHI, LCEA, AI, but not FO or HCFH). The CSA was positively correlated with only HCFH. The rest were not statistical significance linear correlation. The multivariate regression results showed that the age of onset was positively correlated with AGM (r = 0.467). The regression equation used was Y = 9.0 * X (age of onset) - 11.4. CONCLUSION: We found difference in the morphological and mechanical characteristics of the GM between hips with DDH and hips of normal morphology. Of note, the mechanical characteristics of the GM were influenced by bony parameters in patients with DDH.


Asunto(s)
Luxación Congénita de la Cadera , Luxación de la Cadera , Acetábulo , Luxación Congénita de la Cadera/complicaciones , Luxación Congénita de la Cadera/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Osteotomía/métodos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...